PM_{2.5} Gravimetric Analysis Revision 7 Date: August 14, 2003 Page 1 of 24 # Standard Operating Procedure for PM_{2.5} Gravimetric Analysis Environmental and Industrial Sciences Division RTI International^t Research Triangle Park, North Carolina | Prepared by: Lisa C. Treem | Date: 8/14/03 | |----------------------------|---------------| | Reviewed by: | Date: 8-15-03 | | | | | Approved by: AM Jayrus | Date: 8-15-03 | | | Date: | ¹RTI International is a trade name of Research Triangle Institute. ## **CONTENTS** | Section | <u>on</u> | | <u>Page</u> | |---------|-----------|--|-------------| | 1.0 | Proce | dural Section | 3 | | | 1.1 | Scope and Applicability | | | | 1.2 | Summary of Method | | | | 1.3 | Definitions | | | | 1.4 | Health and Safety Warnings | | | | 1.5 | Cautions | | | | 1.6 | Interferences | 4 | | | 1.7 | Personnel Qualifications | 5 | | | 1.8 | Apparatus and Materials | | | | 1.9 | Calibration | | | | 1.10 | Sample Collection | | | | 1.11 | Sample Handling | | | | 1.12 | Sample Preparation and Analysis | | | | | 1.12.1 Initial Lot Stability Test | | | | | 1.12.2 Filter Storage | | | | | 6 | 9 | | | | 1.12.4 Pre-sampling Batch Stability Test | | | | | 1.12.5 Pre-sampling Weighing Procedure | | | | | 1.12.6 Preparing the Filters for Shipment | | | | | 1.12.7 Receipt of Filters from the Field | | | | | 1.12.8 Receipt of Filters from the SHAL and Post-sampling Batch Stability Test | | | | | 1.12.9 Post-sampling Filter Weighing | | | | | 1.12.10 Filter Archival | | | | | 1.12.11 Troubleshooting | | | | 1.13 | Data Acquisition Hardware and Software | | | | 1.14 | Calculations and Data Reduction | | | | 1.15 | Records Management | | | 2.0 | Ouali | ty Control and Quality Assurance | 19 | | | 2.1 | Determination of Working Standard QC Weight | | | | 2.2 | Monitoring Microbalance Performance | | | | | 2.2.1 Quality Control Checks of the Microbalance | | | | | 2.2.2 Removing A Microbalance From Service | | | | 2.3 | QC Filter Samples | | | | 2.4 | Cleaning the Laboratory | | | | | • | | | 3.0 | Refer | rences | 24 | Date: August 14, 2003 Page 3 of 24 ## 1.0 Procedural Section ## 1.1 Scope and Applicability This Standard Operating Procedure (SOP) describes PM_{2.5} filter preparation and gravimetric analysis operations in the RTI Environmental and Industrial Sciences Division (EISD) Gravimetry Laboratory. Filter conditioning and weighing currently takes place in a dedicated laboratory for weighing PM filters. The laboratory consists of two weighing chambers, which have computer-controlled temperature and relative humidity that meet proposed rules FR Nos. 1.61 and 241, and the U.S. Environmental Protection Agency's (EPA's) draft *Quality Assurance Guidance Document* 2.12. ## 1.2 Summary of Method This SOP describes the processes used by RTI for performing $PM_{2.5}$ filter gravimetric analyses. The major steps in the process for handling the filters are as follows: - obtaining filters from the manufacturer and characterizing each lot - conditioning and pre-weighing each filter - packaging and sending the filters to the client for use in their PM_{2.5} monitoring program - receiving, conditioning, and post-weighing each filter - calculating and reporting results - archiving the filters. The individual procedures are described in this SOP and related SOPs. This SOP concentrates on filter weighing operations and other SOPs are referenced as necessary. #### 1.3 Definitions - Gravimetric Analysis determination of particulate concentration based on weight difference. - PM_{2.5} particulate matter with an aerodynamic diameter less than or equal to 2.5 microns. - Filter Lot units of filters from a single type, grade, class, size and composition, manufactured under essentially the same conditions and time by the same manufacturer. Date: August 14, 2003 Page 4 of 24 Filter Batch - units of filters inspected and equilibrated under essentially the same conditions and time in the RTI EISD Gravimetry Laboratory for use in one given shipment to the client. ## 1.4 Health and Safety Warnings The $PM_{2.5}$ weighing operations do not involve unusual risks from electrical equipment or chemical exposures. Standard RTI laboratory health and safety precautions must be followed. RTI personnel must exercise caution when using antistatic devices containing radioactive polonium sources, must keep an inventory of the location and size of antistatic devices, and must dispose of the devices in accordance with manufacturers specifications, RTI safety and health guidelines, and State and local regulations. #### 1.5 Cautions Laboratory personnel will always wear clean clothes and wash thoroughly all parts of their body that may be exposed during weighing, especially hands, arms, face, and hair, using adequate soap and water to remove loose skin and hair, as close as possible in time to the weighing activity. Laboratory coats and gloves are required and will minimize the potential for laboratory contamination. Laboratory coats must be taken off before leaving the weighing facility to minimize contamination from the external environment. Relative humidity is a particularly difficult parameter to control; even if total moisture content stays constant, if temperature changes RH will also change. Gravimetric laboratory personnel must be aware of the potential for unacceptable RH excursions during seasonal extremes (such as high heat and humidity in the summer). Corrective measures must be taken whenever environmental controls are out of specification. ## 1.6 Interferences $PM_{2.5}$ gravimetric results are highly sensitive to certain interfering factors and conditions. The following list describes common precautions to be taken against interferences: Handling procedures, humidity and temperature control of the filter and particulate sample during weighing, and promptness in and consistency of the weighing method prior to and following collection will all be utilized to help control weighing artifacts due to environmental conditions. Date: August 14, 2003 Page 5 of 24 - Weight losses can occur due to thermal or chemical decomposition or evaporation of compounds like ammonium nitrate (NH₄NO₃), which releases ammonia and nitric acid as gases. Semivolatile organic compounds (SVOCs) may be part of the particulate matter on the filters; if so, they may evaporate and cause sample weight losses. Such weight losses will be minimized or standardized by keeping the filters cool during transport to the weighing laboratory and by conditioning and weighing the filters promptly after their receipt in the laboratory. - Some new blank Teflon[®] filters have been found to exhibit a weight loss of up to 150 micrograms (µg) over a period of time up to 6 weeks after they have been removed from their original shipping containers. Analysts must check for weight loss in any new lot of filters that is received (see Section 6). Filters must not be used until their weights have stabilized. - Weight loss due to mechanical removal of particles and/or filter material must be minimized by careful handling during removal of the filter from its cassette, filter conditioning, neutralization of electrostatic charge buildup on the filter, and all other filter-handling tasks before weighing. - Neutralization of electrostatic charge must be performed to prevent biases due to electrostatic attraction or repulsion during the weighing process. ## 1.7 Personnel Qualifications Personnel employed to perform weighing operations must have at least a high school diploma with at least six months experience in computer applications, including spreadsheet and word processing software, and laboratory sample handling and record-keeping practices. Lead analysts must have at least a Bachelor's degree in a laboratory science and at least six months additional experience in the RTI EISD Gravimetry Laboratory. All personnel employed to perform weighing operations will be trained by a supervisor before being allowed to process client samples for the PM_{2.5} program. RTI Laboratory Supervisors helped to devise the written examination and the hands-on practical examination for the laboratory component of EPA's PM_{2.5} FRM Performance Evaluation (PE) program. All RTI analysts will be trained to a competency equivalent to the FRM PE certification before they are allowed to perform weighing operations. #### 1.8 Apparatus and Materials - Mettler Toledo UMT2 microbalance - Marble balance table - Filters, 46.2 mm, Teflon® - Millipore Petrislides[®], appropriately sized for 46.2 mm filters - Filter cassettes of the correct type and make - Filter cassette holders, protective containers Date: August 14, 2003 Page 6 of 24 - Nonmetallic forceps to handle weights - Nonmetallic forceps to handle filters - Staticide[®] - Kimwipes® - Polonium strips (ionizing units) - Three sets of NIST-traceable standards used for working mass reference standards - At least one set of NIST-traceable standards used for primary mass reference standards - Millipore Petrislides[®] - Powderfree gloves - Labcoats - Shoecovers - Sticky floor mats - Computer - Balance Link® or equivalent data acquisition software - Laboratory notebook #### 1.9 Calibration The microbalance will be certified upon initial set-up by an authorized microbalance service representative. Thereafter, the microbalance will be serviced at least annually, and on an as needed basis, by an authorized microbalance service representative. Records kept by RTI will include service dates and calibration results. NIST-traceable standards will be tracked by a control chart to determine if any bias is entering into the system. These standards will be recertified annually. Temperature and relative humidity sensors will be calibrated annually. The microbalance will be internally calibrated using its internal standards and "Autocalibrate" function each time it is brought up from "Standby" mode. If
the microbalance is found to be out of calibration during routine weighing operations, it must be recalibrated by the analyst using the microbalance's internal standards and "Autocalibrate" function. If the microbalance cannot be autocalibrated, it must be serviced only by an authorized microbalance service representative. ## 1.10 Sample Collection Sample collection is not applicable to this SOP because samples are acquired by the state agency responsible for exposing the filters. Date: August 14, 2003 Page 7 of 24 ## 1.11 Sample Handling Note: Additional information on this topic for the Speciation Trends Network can be found in the SOP "Sample Receiving, Shipping, and Archiving Procedures for the PM_{2.5} Chemical Speciation Program," Research Triangle Institute, Center for Environmental Measurements and Quality Assurance, 1999. RTI will provide chain-of-custody documentation with all sample shipments to track and ensure that samples are collected, transferred, stored, and analyzed by authorized personnel; sample integrity is maintained during all phases of sample handling and analysis; and an accurate written record is maintained of sample handling and treatment from the time of its collection, through the laboratory analytical process, to the eventual relinquishing of all data to the client. Upon initial receipt of new filters, RTI will prepare a "Filter Inventory and Inspection" spreadsheet containing the manufacturer's lot number, box numbers, filter identification numbers, and date received by the RTI EISD Gravimetry Laboratory. This form will allow laboratory personnel to select and use the filter boxes in the proper sequence. If the filters are from a manufacturer's lot that has not previously been used in the RTI EISD Gravimetry Laboratory, then an Initial Lot Stability Test must be performed on randomly selected filters to determine and document the minimum length of time required to condition filters from that lot. The Initial Lot Stability Test is explained fully in Section 1.12.1 "Initial Lot Stability Test." Filters must be inspected and conditioned before use. Inspection and conditioning must be performed in the weighing environment. Inspection date, analyst's initials, number of filters rejected, and reasons for rejection must be noted on the hardcopy "Pre-sampling Batch Inspection and Stability Form" in the RTI EISD Gravimetry Laboratory and will be entered into the "Filter Inventory and Inspection" spreadsheet as soon as is practicable. Conditioned filters must be sequentially weighed and packaged for shipment to the designated receiving address(es) in order of filter identification number. Additional information on this topic can be found in Section 1.12.3, "Filter Inspection and Conditioning." Filters will be shipped to the designated address(s) within five days of preweighing to ensure that the 30-day window for using the filter is met. If a filter expires without being used, the filter may be returned to RTI to be reconditioned and weighed again. The decision to recondition filters will be made on a case-by-case basis by the Laboratory Supervisor in coordination with the Project Manager. Chain-of-Custody forms will accompany each sample shipment and will contain the filter identification numbers, accompanying cassettes' identification, pre-sampling weighing date, and date shipped to the designated site operator. Chain-of-custody forms will be completed by site operators to Date: August 14, 2003 Page 8 of 24 provide tracking information from receipt in the field, through sample collection, to return sample shipment to RTI. Upon receipt of loaded filters, RTI will complete the receipt portion of the chain-of-custody form, including date and maximum temperature. RTI will implement, as a matter of standard practice, a sample turn-around time of ten calendar days from the date of receipt from the field. Shipping and maintaining the filters at or below 4°C provides a 30-day window from sampling for RTI to condition and weigh filters. The designated site operators are responsible for shipping filters and cassettes, and cassette containers to RTI at a temperature at or below 4°C. All custody information will be entered into and maintained in the project database. Once the filters have been weighed and the appropriate internal quality control (QC) procedures have been completed, the filters must be returned to their Petrislides® and the lids must be securely replaced. The Petrislides® must be placed in numerical order in the Millipore® slide tray. Each tray must be labeled with the client's name and the range of filter ID numbers archived in that tray, and then sealed in a plastic bag. Two sealed trays will be placed in each outer cardboard Millipore® box. The outer box must then be labeled with the appropriate archival information, including client's name, RTI contact name and telephone extension, filter ID range, and archival date. The box must be placed in a cold storage facility to be maintained at or below 4°C. The archival date must be entered into the appropriate Excel® spreadsheet beside each filter ID number. ## 1.12 Sample Preparation and Analysis Note: Additional information on this topic may be found in the SOP "Standard Operating Procedures for Procurement and Acceptance Testing of Teflon, Nylon, and Quartz Filters," Research Triangle Institute, Center for Environmental Measurements and Quality Assurance, 1999. #### 1.12.1 Initial Lot Stability Test Information derived from the Initial Lot Stability Test must be used to determine the average length of time required to equilibrate filters from a given lot. All Lot Stability Test information must be recorded in the laboratory notebook. The Lot Stability Test must be performed as follows: - 1. Randomly select two filter boxes from the same filter lot. - 2. Randomly select three filters from each box. Date: August 14, 2003 Page 9 of 24 - 3. Place the filters in Petrislides[®] and allow them to equilibrate for at least 24 hours in the weighing environment. - 4. Weigh the six filters, return them to their Petrislides[®], allow them to equilibrate for another 24 hours in the weighing environment, and re-weigh the filters. - 5. Continue the 24-hour equilibration and weighing process for up to five days and plot the trend of weight loss. If the trend is still decreasing after five days, continue the 24-hour schedule of equilibration and weighing. - 6. The filters are considered equilibrated when they no longer exhibit a consistent downward weight trend. - 7. Record the length of time it took the filters to equilibrate. This will be the minimum time that all filters from this lot must equilibrate prior to performing a Batch Stability Test. (described in Section 1.12.3 below). ## 1.12.2 Filter Storage After successful completion of the Initial Lot Stability Test, the numbered boxes of unused filters will be stored until needed. After the manufacturer's lot number, box numbers, filter identification numbers, and date received by the RTI EISD Gravimetry Laboratory are recorded in the "Filter Inventory and Inspection" spreadsheet, the numbered boxes will be placed on the designated laboratory shelf in numerical order so that the next box to be used is easily obtainable. The boxes must be used in numerical order with the lowest number being used first. ## 1.12.3 Filter Inspection and Conditioning Filters must be inspected in groups of 25 and must be rejected if they exhibit any of the following defects: - pinhole - separation of ring - chaff or flashing - loose material - discoloration - filter nonuniformity - others: see Laboratory Supervisor PM_{2.5} Gravimetric Analysis Revision 7 Date: August 14, 2003 Page 10 of 24 If a filter is rejected, the analyst must make a note on the hardcopy "Pre-sampling Batch Inspection and Stability Form" and in the Excel® "Filter Inventory and Inspection Form" spreadsheet and must discard the filter. If the filter is accepted, the analyst must place it in a Petrislide® for equilibration. The analyst must place the Petrislide® lid slightly ajar over the well such that it covers approximately three-fourths of the filter surface. Such a placement of the lid allows for outgassing of the filter while offering some protection from particle deposition. The analyst must inspect and equilibrate a sufficient number of filters to allow for unforseen filter problems or rejection during weighing. The number of filters equilibrated will consist, at a minimum, of the number of filters required for shipment to the client plus an additional five filters. Filters must equilibrate for at least the period of time determined to be necessary in the Initial Lot Stability Test. ## 1.12.4 Pre-sampling Batch Stability Test The Batch Stability Test is used to verify that filters from a particular batch have achieved weight stability and are not losing weight due to outgassing or other process. The Batch Stability Test must be performed after the filters have equilibrated for at least the period of time determined in the Initial Lot Stability Test. Only stable filter batches will be used for PM_{2.5} sampling. The following procedure must be performed each time a batch of filters that has been equilibrated in the RTI EISD Gravimetry Laboratory for less than 60 hours is prepared for analysis. - 1. Randomly select three filters from the batch of equilibrated filters. - 2. Weigh each of the three filters and record the weights in the laboratory notebook. - 3. Allow the filters to equilibrate overnight and reweigh. - 4. If the average weight loss for the three filters is less than $5\mu g$, then they are ready to be weighed for shipment to the client. - 5. If the average weight loss for the three filters exceeds $5\mu g$, then repeat the 24-hour schedule of equilibration and weighing until the average weight loss for the three filters is less than $5\mu g$. ## 1.12.5 Pre-sampling Weighing Procedure The following procedure must be performed
each time $PM_{2.5}$ filters are weighed in the RTI EISD Gravimetry Laboratory. Date: August 14, 2003 Page 11 of 24 - 1. The laboratory's Dickson® relative humidity and temperature data logger is routinely set to collect five-minute grab samples. Twenty-four hours prior to a weigh session verify that this logger setting has not been changed. - 2. The microbalance must be left plugged in and turned on at all times to avoid lengthy warm-up periods. If the microbalance has been left in "Standby" mode, the LCD screen display must be turned on by pressing the tare (Zero) button once. *Do not press the On/Off button*. - 3. Verify that the microbalance is level by observing the level indicator bubble at the rear of the sample chamber. If the microbalance is level, the air bubble will be positioned in the center of the indicator circle. If the air bubble is not centered, level the microbalance by turning the two leveling feet at the rear of the sample chamber until the bubble is in the middle of the indicator circle. Note: The microbalance must be releveled each time it is moved. Releveling will not ordinarily be necessary because the microbalance is not routinely moved. If observation of the level bubble indicates that the microbalance has been moved, notify the Laboratory Supervisor immediately. Always calibrate the microbalance after releveling. - 4. Internally calibrate the microbalance with its "Autocalibrate" function. The microbalance must be internally calibrated each time it is brought up from "Standby" mode. Note: Do not lean on or place weight on the stone balance table or open the laboratory door while the internal calibration is in progress. Minimize movement in the laboratory during the internal calibration. - 5. Turn on the computer, if necessary, and download the humidity and temperature data from the data logger to the computer - 6. Pull the data into an Excel® spreadsheet and calculate the 24-hour mean and standard deviation for temperature and relative humidity. Report temperature to 3 significant digits. - 7. Verify that the weighing chamber's mean temperature and relative humidity for the 24 hours previous have met the following specifications: temperature maintained between 20-23°C with a standard deviation less than two, and 24-hour mean relative humidity maintained between 30-40% with a standard deviation less than five. - 8. Lightly spray a low-lint disposable cloth (Kimwipe®) with Staticide®. Do not direct the spray toward the data logger, microbalance, reference weights, filters, or area around the microbalance and computer. Use the moistened cloth to wipe both sets of forceps Date: August 14, 2003 Page 12 of 24 and the work area around the microbalance and computer. Allow the forceps and work area to air-dry before proceeding. The computer and monitor may be routinely cleaned with products designed for that purpose. - 9. Open the weighing template spreadsheet in the client's folder and save under a filename consisting of the first and last filter ID numbers in the range to be weighed (*e.g.*. 9021884_9021920.xls). - 10. Complete the QC data worksheet with analyst initials, weigh date, start time, client name, RTI project number, filter lot, initial relative humidity (%), and initial temperature (°C, to 3 significant digits). - 11. Complete the database worksheet with filter ID number, box number, lot number, date inspected, initial weigh date, relative humidity (%), temperature (°C, to 3 significant digits), and analyst initials. - 12. Return to the QC data worksheet and position the cursor in a standard reference weight cell. Open the automatic microbalance door by pressing the Select button once. Using nonmetallic forceps, place either the 100mg or 200mg working mass standard on the microbalance weigh pan, and close the microbalance door by pressing the Select button a second time. Take care not to drop, bend, or otherwise mar the standard. - 13. Wait for the microbalance to display a stable reading for at least 20 seconds. - 14. Press the print button on the microbalance to enter the displayed weight directly to the cursor position in the QC data worksheet. - 15. Repeat this process with a second working mass standard to bracket the weight of a typical Teflon® PM_{2.5} filter. - 16. Compare the weights of the working mass standards to the QC weight acceptance limits posted near the microbalance. If a mass standard varies from its verified weight by more than 3µg, autocalibrate the microbalance and reweigh the working mass standard. If the mass standard still varies by more than 3µg, contact the Laboratory Supervisor. - 17. Return to the database worksheet and position the cursor in the first filter weight cell. - 18. Using the filter handling forceps, pick up the first filter to be weighed and place it on the polonium strips. - 19. Allow the filter to rest on the strips for at least 60 seconds. If there are signs of static electricity, the filters must be left on the polonium strips for a longer period of time. Several microbalance indicators that electrostatic charge may be a problem are noisy readout, drifts, and sudden readout shifts. - 20. Open the automatic microbalance door by pressing the Select button once, place the filter on the weigh pan, and close the microbalance door by pressing the Select button a second time. - 21. Wait for the microbalance to display a stable reading for at least 20 seconds - 22. Press the print button to enter the weight directly into the database worksheet. - 23. Open the automatic microbalance door by pressing the Select button once, remove the filter from the weigh pan, and close the microbalance door by pressing the Select button a second time. The microbalance must return to zero on its own. If after 20 seconds the microbalance has not returned to zero, press the tare key. It should not be necessary to press the tare key after every filter. If it proves necessary to press the tare key after every filter, troubleshoot the system as outlined in this procedure. - 24. Repeat the process for all the filters. After every tenth filter, reweigh working mass standards bracketing the weight of a typical filter (100mg and 200mg) and record the weight in the QC data worksheet. Compare the weights of the working mass standards to the QC weight acceptance limits for the working mass standards. Place every tenth filter aside to be reweighed at the end of the weigh session. - 25. Weigh the number of filters needed for shipment to the client plus one additional filter to be used as a laboratory (lab) blank. The lab blank must be placed in a Petrislide® and labeled with client name, RTI project number, weigh date, and the filter ID range of which it is representative. - 26. Reweigh every tenth filter and record the initial and final weights in the QC data worksheet. If replicate filter weights vary by more than 15µg, contact the Laboratory Supervisor. The Laboratory Supervisor will troubleshoot the system and may direct the analyst to troubleshoot the microbalance system or to allow the filters to equilibrate an additional length of time before reweighing all the filters in the batch. - 27. If replicate filter weights are within 15µg, then reweigh the 100mg and 200mg working mass standards. If the working mass standards are within 3µg of their verified weight, Date: August 14, 2003 Page 14 of 24 then the weigh session is complete. All changes to the spreadsheet must be saved in the client's folder. #### 1.12.6 Preparing the Filters for Shipment Shipping and receiving of filters for the $PM_{2.5}$ Chemical Speciation Program will be performed in the Shipping, Handling and Archiving Laboratory (SHAL). These procedures are discussed in the SOPs for the SHAL. ## 1.12.7 Receipt of Filters from the Field Shipping and receiving of filters for the $PM_{2.5}$ Chemical Speciation Program will be performed in the SHAL. These procedures are discussed in the SOPs for the SHAL 1.12.8 Receipt of Filters from the SHAL and Post-sampling Batch Stability Test The following procedure must be performed each time $PM_{2.5}$ filters are received from the SHAL. - 1. Review and complete all Chain-of-Custody forms submitted with the filters. - 2. Log the filter identification information in the PM_{2.5} Sample Receipt Notebook. Include filter ID numbers, date received from the SHAL, receiver's initials, pertinent information concerning shipment integrity communicated by the SHAL, and any observations about obvious filter damage. - 3. File one copy of the Chain-of-Custody form(s) in the client's three-ring binder in RTI Building 5. - 4. Transfer a second copy of the Chain-of-Custody form(s) with the filters to the weighing chamber in RTI Building 11. If the filters are not received from the SHAL in Petrislides®, place each filter in a clean Petrislide®. Label each Petrislide® with client name, date received from the SHAL, and filter ID number. - 5. Place the Petrislides[®] containing the filters in numerical order on a tray. Verify the filter ID numbers against the ID numbers recorded on the Chain-of-Custody form(s) - 6. Place the filter tray on the appropriate shelves in the weighing chamber to equilibrate. Place the Petrislide[®] lid slightly ajar over the slide well such that it covers approximately three-fourths of the filter surface. - 7. Allow the filters to equilibrate in the weighing chamber for at least 24 hours. - 8. Randomly select three of the sampled filters, weigh, and then replace on the shelf to equilibrate at least 24 additional hours. - 9. Reweigh the three sampled filters. If the average weight loss for the three filters is less than $5\mu g$, the batch of filters can be weighed. If the average weight loss for the three filters exceeds $5\mu g$, repeat the 24-hour equilibration and weighing process. #### 1.12.9 Post-sampling Filter Weighing Open the appropriate $\operatorname{Excel}^{\otimes}$ spreadsheet(s) to perform post-sampling weighing of $\operatorname{PM}_{2.5}$
filters. Post-sampling weighing is performed as outlined in the pre-sampling weighing section (see 1.12.5). All internal QC procedures described in the pre-sampling filter weighing section must be followed during post-sampling weighing. Additional QC data must be recorded as follows. - 1. Identify field blanks, if known, in the "Blanks" column of each spreadsheet. - 2. Copy the initial weight for each lab blank from the database worksheet to the "Lab Blank Initial Weight" cell of the QC data worksheet of the appropriate spreadsheet. Reweigh the lab blank for each spreadsheet and enter this weight in the "Lab Blank Final Weight" cell of the QC data worksheet. Initial and final lab blank weights must not differ by more than 15µg. A weight gain of more than 15µg may indicate contamination in the weighing chamber. A weight loss of more than 15µg may indicate that the filters were not adequately equilibrated before shipment to the sampling sites. If the lab blank does not meet the appropriate criterion, notify the Laboratory Supervisor and QA Officer immediately. - 3. Copy field blank filter ID numbers, initial weights, and final weights from the database worksheet to the appropriate section of the QC data worksheet. Initial and final field blank weights must not differ by more than 30µg. A weight gain of more than 30µg may indicate possible field contamination of the filters. A weight loss of more than 30µg may indicate that the filters were not adequately equilibrated before shipment to the sampling sites. If initial and final field blank weights differ by more than 30µg, notify the Laboratory Supervisor so that the client can be notified of possible field-related problems. - 4. All post-sampling filter weights must be recorded. Note any problems observed during post-sampling filter weighing (e.g. filter damage, incomplete documentation, etc.) in the PM_{2.5} Gravimetric Analysis Revision 7 Date: August 14, 2003 Page 16 of 24 "Comments" column of the database worksheet. Data flags will notify the client that these data may be invalid. #### 1.12.10 Filter Archival After post-sampling weighing, filters must be archived according to the procedure outlined in Section 1.11 (Filter Handling). The "Archival Date" column must be completed in the appropriate Excel® spreadsheet. #### 1.12.11 Troubleshooting Problems in meeting the various QC requirements during a pre-sampling or post-sampling weighing session can be related to the filter conditioning environment, a malfunctioning microbalance, or the filters themselves (exposed filters). Analysts must take the appropriate corrective action or call the matter to the attention of the Laboratory Supervisor if serious problems are observed. All problems that affect reportable data must be brought to the attention of the Laboratory Supervisor and must be documented for use during data validation. Serious, systematic, or chronic problems must be dealt with using the Corrective Action Procedures described in the Laboratory's QA Project Plan (QAPP). The following list describes common troubleshooting situations and recommended solutions: - If filter weights are unstable, ensure that temperature and relative humidity are within the acceptance criteria and that levels do not fluctuate excessively. Also, check temperature and relative humidity monitoring devices with independent devices. - If unexplained weight gains are observed on laboratory blanks, or if visual contamination is observed, consider the possibility of laboratory contamination. More frequent cleaning may be required. - To minimize measurement uncertainties and fluctuations associated with electrical charge, samples must be charge-neutralized prior to weighing using Polonium 210 alpha sources. Since the radioactive half-life of this material is approximately 6 months, charge neutralizers must be replaced at least annually. - If a power failure has occurred, the user must manually reset the microbalance's electronics and must run the internal recalibration procedure. Recovery time may be required for the microbalance to stabilize after a power outage. Refer to the instrument's operating manual for recommendations. Date: August 14, 2003 Page 17 of 24 - If blank or working standard weighing discrepancies are observed between sessions, recertify the working standards against the laboratory primary standards and/or calibrate the microbalance using an external laboratory primary standard. - If microbalance repairs or significant internal adjustments are necessary, a qualified service technician must be called. Unqualified personnel must not attempt to adjust or repair the microbalance. <u>Note</u>: Additional information on this topic can be found in Section 2.2.2 "Removing A Microbalance From Service." - If certain exposed filters appear to be losing weight systematically over time, the particulate matter may be composed of nitrates or other semi-volatile species. - If any unused filter is found to have a weight outside the normal range (i.e., 110 to 160 mg), investigation may be called for. Examine other filters from the same lot for defects. - A consistent negative replication (>15 μ g) for laboratory blank filters, may be a sign that the filters have not equilibrated long enough and are off gassing semi-volatiles from the manufacturing process. Monitor other filters from the same lot; additional conditioning time may be required before filters from that lot can be used for sampling. ## 1.13 Data Acquisition Hardware and Software <u>Note</u>: See the SOP "Data Handling Procedures for the Speciation Analysis Program," for detailed procedures on this topic. The referenced SOP will provide the detailed about the data acquisition software to be used in the chemical speciation program. The two major programs currently used to process RTI EISD Gravimetry Laboratory data are Microsoft Excel® and BalanceLink®. Spreadsheets used for managing data are created in Excel®. These spreadsheets are to be replaced by custom RTI-written Microsoft Access® routines to facilitate compliance with Good Automated Laboratory Practices (GALP) requirements. RTI will modify the PED program which RTI developed for the FRM PE program under contract to OAQPS. IBM-PC compatible computers will be used in the weighing laboratory. These are networked via RTI's internal computer network. Password security will be used to validate users. Full or incremental backups of the data will be performed daily. #### 1.14 Calculations and Data Reduction The calculations relevant to the gravimetric procedures are listed in the following table. Date: August 14, 2003 Page 18 of 24 | Parameter | Units | Type of Conversion | Equation | |---|-------|--|--| | Filter Volume
(V _a) | m^3 | Calculated from average Flow Rate (Q_{ave}) in L/min, and total elapsed time (t) in min. | $V_a=Q_{ave} \times t \times 10^{-3}$ | | Mass on filter (M _{2.5}) | μg | Calculated from the filter post-weight (M_f) in mg and filter pre-weight (M_i) in mg, multiplied by the unit conversion $(\mu g/mg)$ | $M_{2.5} = (M_{\rm f} - M_{\rm i}) \times 10^3$ | | $\begin{array}{c} PM_{2.5} \\ Concentration \\ (C_{pm2.5}) \end{array}$ | μg/m³ | Calculated from laboratory data and sampler volume | PM _{2.5} =M _{2.5} / V _a | ## 1.15 Records Management Note: See the SOP "Data Handling Procedures for the Speciation Analysis Program," for detailed procedures on this topic. The following discussion outlines the records management procedures to be implemented for the gravimetric filters. The referenced SOP will provide the detailed records management protocols for all filter and sample types that are used on the chemical speciation program. As outlined in Section 1.11 (Sample Handling), RTI will prepare a "Filter Inventory and Inspection Form" upon initial receipt of new filters. This form will be completed with filter ID numbers, box numbers, date received, date inspected, number of filters rejected, and reason(s) for rejection. The form will allow laboratory personnel to select and use the filter boxes in the proper sequence. RTI will provide Chain-of-Custody documentation with all sample shipments to track and ensure that: - samples are collected, transferred, stored, and analyzed by authorized personnel; - sample integrity is maintained during all phases of sample handling and analysis; and - an accurate written record is maintained of sample handling and treatment from the time of its collection, through the laboratory analytical process, to the eventual relinquishing of all data to the client. PM_{2.5} Gravimetric Analysis Revision 7 Date: August 14, 2003 Page 19 of 24 Chain-of-Custody forms will include filter ID numbers, accompanying cassette identification, pre-sampling weighing date, and date shipped to the designated site operator. One copy of the Chain-of-Custody form will be retained by the site operator. A second copy of the form will accompany return shipments to RTI. Upon receipt of loaded filters from the field, RTI will complete the final portion of the Chain-of-Custody form, including date received at RTI and maximum temperature during shipment. The designated site operators are responsible for shipping filters and cassettes, and cassette containers to RTI at a temperature at or below 4°C. The Filter database will be completed with the information described above and with filter archiving information. Filters will be archived, following the procedure outlined in Section 1.11 (Filter Handling) and 1.12.8 (Filter Archival), until one year after termination of the contract, or until the client requests return of such materials, whichever comes earlier. Boxes of archived filters will be labeled with the appropriate archiving
information, including client name, RTI contact name and telephone extension, filter ID range, and archive date, and placed in a secure cold storage facility. The archival date for each filter ID number will be completed in all pertinent Excel® spreadsheets. ## 2.0 Quality Control and Quality Assurance ## 2.1 Determination of Working Standard QC Weight The following procedure must be performed each time the working mass reference standards are recertified by the North Carolina Department of Agriculture Standards Laboratory or a similar NIST-traceable standards laboratory, and each time the working mass reference standards exceed the $PM_{2.5}$ acceptance limits. - 1. Using clean weight forceps, weigh the working mass reference standard daily for five days. - 2. Record the weights and calculate the mean.* *The mean will be the weight used for comparison during each subsequent weigh session. If the mean weight determined for the working mass reference standard differs from the certified value by more than $20\mu g$, verify the primary standards and then either call the microbalance manufacturer's service representative to calibrate the microbalance or return the working mass standard for recertification. Date: August 14, 2003 Page 20 of 24 ## 2.2 Monitoring Microbalance Performance ## 2.2.1 Quality Control Checks of the Microbalance Routine checks of the microbalance using certified mass standards must be performed to detect any appreciable changes in instrument response over time. Since fine particulate mass concentrations are calculated based on the measured difference between loaded filters and clean filters, the absolute response of the microbalance is less critical than long-term stability and repeatability. Internal QC checks are recorded during each weigh session on the session's QC data worksheet. The following internal QC checks designed to monitor appreciable changes in microbalance response are performed at the beginning and end of every weigh session: - 1. Measure and record the temperature, relative humidity, operator's initials, date, and time on the weigh session's QC data worksheet. - 2. Zero and autocalibrate the microbalance. - 3. Weigh the NIST Class 1 100mg mass standard. Record the weight on the QC data worksheet for that weigh session and compare this weight to those previously determined for the 100mg standard. - 4. Weigh the NIST Class 1 200mg calibration weight. Record the weight on the QC data worksheet for that weigh session and compare this weight to those previously determined for the 200mg standard. #### 2.2.2 Removing A Microbalance From Service If the weights recorded for the certified mass standards used to perform systematic checks of the microbalance differ by more than 20µg from their certified value or by more than 5µg from their last recorded weight, the microbalance must be examined to verify that it is level, that the weigh pan and sample chamber are free of visible contamination, and that the chamber door mechanism is free of visible contamination that would prevent the door from sealing properly. These conditions must be corrected if necessary. The microbalance must be internally calibrated and the certified mass standards must be weighed again. If the weights recorded for the certified mass standards still differ by more than 20µg from their certified value or by more than 5µg from their last recorded weight, three laboratory blanks must be randomly selected from the laboratory blanks exposed in the laboratory. The three laboratory blanks will be weighed and their weights will be recorded on the QC data worksheet for the weigh session. If the weight recorded for any one of the laboratory blanks differs by more than 15µg from its initial weight, the microbalance will be removed from service pending repair and calibration by an authorized microbalance service representative. The procedure for removing a microbalance from service in the RTI EISD Gravimetry Laboratory is as follows: - 1. Leave the microbalance in "Standby" mode. - 2. Notify the Laboratory Supervisor that a routine check of the microbalance as described above has indicated that the microbalance is out of compliance. - 3. Place a clearly written notice on the stone weighing table that states, "THIS MICROBALANCE WAS REMOVED FROM SERVICE ON MM/DD/YY PENDING REPAIR AND CALIBRATION BY AN AUTHORIZED MICROBALANCE SERVICE REPRESENTATIVE." Sign and date the notice. - 4. Print the pertinent weigh session QC data worksheet. Paste this sheet into the microbalance log. Write a brief summary of the microbalance checks and corrective actions in the microbalance log and initial and date the summary. - 5. The Laboratory Supervisor will contact Mettler Toledo to schedule a service appointment, notify the Quality Assurance Officer, and contact clients and the SHAL, as deemed necessary and appropriate, to discuss rescheduled delivery of tared filters. - 6. If sampled filters must be weighed to avoid expiration in the RTI EISD Gravimetry Laboratory, notify the Laboratory Supervisor. Weigh the sampled filters on the laboratory's second microbalance. Flag any filter whose post-sampling weighing is performed on a microbalance other than the microbalance on which its initial (tare) weighing was performed with an explanatory comment. - 7. After the microbalance has been repaired, calibrated, and certified by an authorized microbalance service representative, remove the written notice from the stone weighing table. Write a brief summary of the microbalance repair in the microbalance log and initial and date the summary. - 8. Verify the microbalance performance with the certified working mass standards as described in 2.2.1, and document this verification in the microbalance log. ## 2.3 QC Filter Samples The following table summarizes the recommended frequency of QC filters for the $PM_{2.5}$ program: Date: August 14, 2003 Page 22 of 24 | Type of QC Filter | Description | Acceptance
Criteria | |------------------------------|---|---------------------------------| | Lot Stability Test Filters | Six filters are repeatedly weighed to determine the minimum necessary equilibration time for filters from the same manufacturing lot. | weight trend
approaches zero | | Batch Stability Test Filters | Three filters from a batch are repeatedly weighed during equilibration to verify the stability of the filter shipment batch. | weight loss < 5 μg | | Laboratory Blank Filters | One laboratory blank filter is weighed for every filter shipment batch shipped to the client. | weight loss < 15 μg | | Field Blank Filters | Unexposed filters from each shipment batch are designated as field blanks by the client. | weight difference < 30 μg | | Replicate Filter Weighings | Every tenth filter (both preweighing and postweighing) is reweighed. | weight difference < 15 μg | ## 2.4 Cleaning the Laboratory The laboratory will be cleaned monthly or as needed to minimize contamination in the weighing environment. The laboratory will be cleaned after any renovation, maintenance, or repair activity in the vicinity of the weighing chambers (RTI Bldg 11, Bay 6). Cleaning will be performed by laboratory analysts who are familiar with the laboratory equipment, systems, and gravimetric analysis operations. Ultraviolet (UV) fluorescent inspection of surfaces in the weighing chambers will be performed annually to detect particulate microcontamination in the controlled environment to aid the analysts in identifying problem areas and refining their cleaning strategy. In this inspection, a UV hand lamp will be used to highlight contamination on surfaces in the illumination area. At a minimum, the following procedure will be followed when cleaning the laboratory: - 1. Don shoe covers, disposable lab coats, and powder-free gloves prior to cleaning the laboratory. - 2. After donning protective garments and gloves, replace all Petrislide® lids securely on open Petrislides® in which unsampled and sampled filters are conditioning. Closing the Petrislides® protects filter surfaces from contamination due to fall-out of settled particulate which may be resuspended during cleaning. Date: August 14, 2003 Page 23 of 24 - 3. Place all balances in "Standby" mode. - 4. Verify that all working mass standards (reference weights) are stored in tightly closed boxes to protect them from contamination during cleaning. - 5. Shut down all computers. - 6. Remove all auxiliary supplies (unopened boxes of filters, FRM magazines and cassettes, mouse pads, etc.) from the chamber. - 7. Invert all ionizing units and tap them gently on a table top to dislodge particulate. Do not tamper with or touch the foil-covered Polonium strips. - 8. Damp-wipe all vertical and horizontal surfaces with a low-lint disposable cloth moistened with DI water. Disposable cloths should be damp, not wet. A small amount (approximately $50~\mu L$) of Staticide® may be added to the DI water used to wipe walls, shelves, table tops, network junction boxes, etc. Do not wipe the floor with a Staticide® solution; Staticide® may make the floor slippery. Discard disposable cloths after use. - 9. When damp-wiping vertical and horizontal surfaces, pay particular attention to cables and cords, corners, ledges, network/telephone junction boxes, telephones, computer components, computer mouse, the shelf racks on which trays of filters are placed, the work area around the balances, and the balances, themselves. Gently wipe the top of the balance's power supply, data acquisition component, and chamber component. Do not place pressure on the microbalance. - 10. Gently clean the balance's sample chamber and weigh pan with the brush provided by the manufacturer. The brush is located in a small drawer on the side of the chamber component. Pay particular attention to the groove in which the automatic chamber door
moves as it opens and closes. - 11. Using a low-lint sponge mop, damp-mop the floor with DI water. Rinse the mop frequently and change the water frequently. Use a textured scrubber as needed to remove visible staining. As noted previously, Staticide[®] must not be added to the water used to mop the floor. - 12. Exit the chamber, changing the adhesive mats inside and outside the chamber door en route. - 13. Allow surfaces to air dry. Wait at least one hour for the chamber's air circulation system to pull air through the plenum's course filters. - 14. Pre-clean auxiliary supplies before returning them to the chamber. - 15. After donning protective garments and gloves, remove Petrislide[®] lids from the Petrislides[®] that were closed prior to cleaning and place each lid slightly ajar over the Petrislide[®] well such that it covers approximately three-fourths of the filter surface. As noted previously in this SOP, such a placement of the lid allows for outgassing of the filter while offering some protection from particle deposition. - 16. Reboot computers. - 17. Bring balances up from "Standby" mode and internally calibrate them using the "Autocalibrate" function. ## 3.0 References - 1. 40 Code of Federal Regulations, Parts 50 (Appendix L), 53, and 58 "Revised Requirements for Designation of Reference and Equivalent Methods for PM_{2.5} and Ambient Air Quality Surveillance for Particulate; Final Rule" (referred to herein as 40 CFR Parts 50/53/58) as published in the *Federal Register*, Volume 62, Number 138, Friday, July 18, 1997. - 2. The U.S. EPA *Quality Assurance Handbook*, Volume II, Part II, Section 2.12, "Monitoring PM_{2.5} in Ambient Air Using Designated Reference or Class 1 Equivalent Methods" (referred to herein as QA 2.12). - 3. Mettler UMT2 Microbalance Operations Manual - 4. Related SOPs: - "Sample Receiving, Shipping, and Archiving Procedures for the PM_{2.5} Chemical Speciation Program," RTI, Center for Environmental Measurements and Quality Assurance, 1999. - "Standard Operating Procedures for Procurement and Acceptance Testing of Teflon, Nylon, and Quartz Filters," RTI, Center for Environmental Measurements and Quality Assurance, 1999. - "Data Handling Procedures for the Speciation Analysis Program," RTI, Center for Environmental Measurements and Quality Assurance, 1999.